Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Polymers (Basel) ; 14(19)2022 Sep 20.
Article in English | MEDLINE | ID: covidwho-2066327

ABSTRACT

Emerging natural-based polymers and materials progress and new technology innovations open the way for unique food products with high nutritional value development. In this regard, oleogel may be essential in replacing fatty acids from food products. In this study, we researched the effects of varied soy lecithin (SYL) concentrations on the various physicochemical characteristics of soy wax (SW)/refined soybean oil (RSO) oleogels. These oleogels had a soft texture. The microscopic analysis of the oleogels suggested that the thickness, length, and density of the wax crystals (needle-shaped) varied as the SYL content was changed. Colorimetric analysis indicated that the oleogels were slightly yellowish. FTIR spectrometry helped analyze the functional groups of the raw materials and the oleogels. All the functional groups present in the raw materials could be accounted for within the oleogels. The only exception is the hydrogen-bonding peak in SW, which was not seen in the FTIR spectrum of the oleogels. It was found that at a critical SYL content, the oleogel showed a stable and repeatable wax network structure. This can be described by the presence of the uniformly distributed fat crystal network in the sample. The DSC analysis revealed that the oleogel samples were thermo-reversible, with their melting and crystallization temperatures ~43 °C and ~22 °C, respectively. In gist, it can be concluded that the incorporation of SYL can impact the color, wax crystal network characteristics, thermal characteristics, and mechanical characteristics of the oleogels in a composition-dependent manner.

2.
J Biol Chem ; 297(3): 101018, 2021 09.
Article in English | MEDLINE | ID: covidwho-1380706

ABSTRACT

The coronaviral nonstructural protein 9 (Nsp9) is essential for viral replication; it is the primary substrate of Nsp12's pseudokinase domain within the viral replication transcription complex, an association that also recruits other components during different stages of RNA reproduction. In the unmodified state, Nsp9 forms an obligate homodimer via an essential GxxxG protein-interaction motif, but its ssRNA-binding mechanism remains unknown. Using structural biological techniques, here we show that a base-mimicking compound identified from a small molecule fragment screen engages Nsp9 via a tetrameric Pi-Pi stacking interaction that induces the formation of a parallel trimer-of-dimers. This oligomerization mechanism allows an interchange of "latching" N-termini, the charges of which contribute to a series of electropositive channels that suggests a potential interface for viral RNA. The identified pyrrolo-pyrimidine compound may also serve as a potential starting point for the development of compounds seeking to probe Nsp9's role within SARS-CoV-2 replication.


Subject(s)
COVID-19/virology , Pyrimidine Nucleotides/metabolism , RNA-Binding Proteins/metabolism , SARS-CoV-2/metabolism , Viral Proteins/metabolism , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Binding , RNA/metabolism , SARS-CoV-2/physiology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL